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Abstract
Designing effective reward functions is a fundamental challenge for controlling high-dimensional
human musculoskeletal systems. For example, humans can describe movement goals like “walk
forward with upright posture”, but the underlying motor strategies that realize these goals are im-
plicit and complex. We introduce Motion from Vision-Language Representation (MoVLR), which
uses vision-language models (VLMs) to bridge natural language descriptions and human motion in
musculoskeletal control. Instead of handcrafted rewards, MoVLR integrates control learning with
VLM feedback to align control policies with physically coherent behaviors. Our approach trans-
forms language and visual assessments into guidance for embodied learning of a variety of human
movements from high-level descriptions. MoVLR automatically designs and optimizes rewards for
the control of a high-dimensional musculoskeletal model for manipulation and locomotion. These
results indicate that vision-language models can effectively ground abstract motion descriptions in
the implicit principles of physiological motor control.
Keywords: Embodied Learning, Internal Dynamics, Musculoskeletal Control, Motion Represen-
tation, Vision Language Models

1. Introduction

Humans acquire motion control through practice, imitation, and external guidance, with effective
control arising from the intricate interactions between the nervous and musculoskeletal systems.
Unlike general robotic systems, musculoskeletal agents exhibit highly nonlinear, overactuated, and
high-dimensional dynamics (Tohidi et al., 2016). Multiple muscles or synergies can produce iden-
tical joint motions, while coordinated body movements demand precise and elaborate control of
the entire musculature. These factors present fundamental challenges to achieving efficient natural
motion control. Recent progress in high-dimensional musculoskeletal control has utilized learning-
based frameworks (Schumacher et al., 2022; He et al., 2024). However, most existing methods rely
on heuristic learning objectives such as velocity tracking or energy minimization, failing to capture
the nuanced structure of motion complexity. Although such rewards can enable basic task com-
pletion, they inadequately embody anatomical principles and often yield biomechanically unnatural
movements.

Recent advances in large language models (LLMs) and vision-language models (VLMs) have
shown promise in eliciting high-level notions of movement quality and coordination to design ex-
ecutable reward designs, enabling automated reward learning (Ma et al., 2023; Zeng et al., 2024).

© 2026 S. Soedarmadji, Y. Wei, C. Zhang, Y. Yue & Y. Sui.



SOEDARMADJI WEI ZHANG YUE SUI

Despite encouraging results across several robotic learning tasks, most works rely on episodic statis-
tics as static feedback for reward learning. Their evaluations are limited in low-dimensional, torque-
driven systems with explicit dynamics. Meanwhile, language can convey explicit instructions for
human motion, yet motor learning also largely depends on implicit sensorimotor patterns that are
difficult to formalize. Therefore, whether LLMs/VLMs can be leveraged to infer internal dynamical
representations for motion reward learning of high-dimensional musculoskeletal control remains an
open question.
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Figure 1: Workflow of MoVLR. Policy optimization is performed to provide high-dimensional mus-
culoskeletal dynamics of the reward candidate. A VLM evaluates the corresponding movement
video ζ(i) to update the current best reward design r∗ and suggest biomechanical improvements F
for a LLM to refine reward generation of r(i+1).

In this paper, we present Motion from Vision Language Representation (MoVLR), which auto-
matically learns rewards for high-dimensional musculoskeletal control by integrating both descrip-
tive and dynamical feedback. As shown in Figure 1, MoVLR extracts high-dimensional muscu-
loskeletal dynamics of candidate rewardsl via policy optimization and rollout. The resulting control
dynamics are rendered into movement videos to provide dynamical feedback. A vision–language
model then evaluates the agent’s motion and produces structured biomechanical feedback, which
is used by a LLM to refine the reward generation process. By encoding temporal dynamics into
semantically meaningful descriptors, MoVLR bridges raw perceptual input with domain-informed
motion representations, providing a scalable path toward biomechanically realistic control reward
for high-dimensional musculoskeletal systems. The supplementary material and complete code to
reproduce all experimental results can be found at: https://sites.google.com/view/movlr/home.

Contributions: We develop MoVLR, a fully automatic pipeline which effectively capture im-
plicit dynamics and design explicit rewards for controlling high-dimensional musculoskeletal sys-
tems. We show that MoVLR generalizes across movement types, environments and system mor-
phologies with explainable reward terms to represent implicit musculoskeletal dynamics. Our work
provides a novel approach that enables interpretable evaluation of motor performance, adaptive re-
finement of reward design through vision-language feedback, and a transferable control framework
for natural and coordinated motion.
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2. Related Works

2.1. Control of musculoskeletal systems

The control of high-dimensional musculoskeletal systems presents a fundamental challenge due to
the high dimensionality and redundancy inherent in human-like actuation. Considerable progress
has been made in building faithful simulation environments for muscle-tendon dynamics and joint
kinematics, enabling more realistic learning and evaluation (Lee et al., 2019; Song et al., 2021;
Caggiano et al., 2022). To manage the control complexity, many works simplified training by de-
composing the process into hierarchical pipelines (Lee et al., 2019; Park et al., 2022; Feng et al.,
2023) or by employing curriculum learning schedules (Caggiano et al., 2023; Park et al., 2025).
Other studies tried to improve sample efficiency via bio-inspired sampling (Schumacher et al.,
2022), coordinated latent-space exploration (Chiappa et al., 2023; Simos et al., 2025), or model-
based control (Hansen et al., 2023). Recent approaches further reduced control dimensionality by
extracting muscle synergies informed by task demands or anatomy (Berg et al., 2024; He et al.,
2024). Despite these advances, the resulting performance often hinges on manually engineered re-
ward functions that are crafted with human effort to accomplish specific tasks and encode implicit
domain knowledge.

2.2. Language and multimodal driven reward design

Recent advances in large language models have demonstrated their ability to facilitate reward and
feedback design for robotics and simulation systems (Goyal et al., 2019; Song et al., 2023; Ma et al.,
2024; Xie et al., 2024; Masadome and Harada, 2025). Eureka (Ma et al., 2023) uses code-generating
LLMs to synthesize dense, human-level reward functions that surpass manually engineered counter-
parts in both expressivity and task relevance. While originally proposed in the context of reinforce-
ment learning, this paradigm is equally relevant to control systems: the generated signals can be
viewed as structured feedback that shapes system dynamics toward desired trajectories (Guo et al.,
2024; Narimani and Emami, 2025; Zhou et al., 2025).

Beyond text-only models, recent VLM-based works have further demonstrated the value of in-
corporating multimodal signals such as images or video into feedback design (Rocamonde et al.,
2023; Brohan et al., 2023; Ge et al., 2023; Wang et al., 2024; Zeng et al., 2024), suggesting a
trend towards more expressive and physically grounded control objectives. For example, HAR-
MON (Jiang et al., 2024) leverages a VLM to iteratively refine humanoid motion by evaluating
sequences of rendered frames against language descriptions, using these visual snapshots to assess
semantic alignment and guide motion adjustments. However, existing methods still lack a prin-
cipled way of turning VLM/LLM feedback into structured dynamical signals that can shape the
reward function, and often provide only coarse or ad hoc representations of multimodal feedback
rather than integrating it systematically into control.

3. Preliminaries

3.1. High-dimensional musculoskeletal control

Musculoskeletal systems. In this paper, our target systems are high-dimensional, over-actuated
musculoskeletal systems with dynamics governed by

M(q) q̈ + c(q, q̇) = J⊤
mfm + J⊤

c f c + τ ext, (1)
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where q are generalized joint coordinates, M(q) is the mass matrix, and c(q, q̇) represents Coriolis
and gravitational effects. The Jacobians Jm and Jc map actuator and constraint forces (fm,f c)
to generalized coordinates, and τext denotes external torques from the environment. Muscles are
modeled as first-order actuators driven by neural controls u with activation a, where the force fm
generated by one actuator is formulated by:

fm = Fk(l, v) a+ Fp(l),
∂a

∂t
=

u− a

τ(u, a)
, (2)

with actuator length l, velocity v,gains Fk, bias Fp and time coefficient τ . Note that Fk, Fp and τ
vary with muscle states, leading to high non-linearity. In our experiments, we use MS-Human-700
model (Zuo et al., 2024) as the major benchmark for human full-body musculoskeletal control. The
model consists of 206 joints and 700 muscle-tendon actuators. Additional experiments can involve
other morphologies.
Policy optimization problem. We model the high-dimensional musculoskeletal control problem
as a finite horizon Markov decision process (MDP) with state s ∈ S, control u ∈ U , dynamics
f := S × U → S, horizon T , policy π := S → U and reward r := S × U → R. In this paper,
we formulize the reward as linear combination of reward terms: r = w · r with w = (w1, w2, · · · )
and r = (r1, r2, · · · ) as the weights and values of specific reward terms. For example, a reward for
human walking can be expressed as:

rwalk = wheightrheight + wbalancerbalance + · · ·+ wforwardrforward. (3)

Given initial state s0, we aim to achieve stable control of the system by finding a policy π∗ that
maximize the reward function:

π∗ = argmaxπ

T−1∑
t=0

r(st,ut), ut = π(s), st+1 = f(st,ut). (4)

The above policy optimization problem is also equivalent to reward minimization commonly used
in control-based methods, where the reward function is the negative reward.

3.2. Reward learning for musculoskeletal control

While the above control problem provides single-step reward definition, the control performances
are usually evaluated over full horizon. The objective of reward learning is to find single step reward
r∗ that maximize the global reward function R:

r∗ = argmaxrR(ζ), ζ = (s0,a0, · · · , sT−1,aT−1), ut = π∗
r(st), st+1 = f(st,ut), (5)

where π∗
r is the optimal policy derived by maximizing r. In practice, the global reward R can be

high-level as motion descriptions in natural language, such as ”walk forward” or ”grab the bottle”.
The single-step reward r consists of multiple reward terms and parameters as code pieces which
need to be compatible with the policy optimization framework. Achieving effective reward learning
requires: (1) Embodied understanding of human movement: extracting implicit biomechanical
knowledge of the musculoskeletal system based on the motion description, and (2) Effective re-
ward generation: integrating multimodal feedback to design explainable reward terms which are
executable for policy optimization.

4. Methods
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Algorithm 1 MoVLR

Require: Motion description R, environment code E ,
max iterations N , initial reward design r(0)

1: ζ∗ ← ∅, r∗ ← ∅
2: for i = 0, · · · , N − 1 do

▷ Musculoskeletal motion dynamics
3: Obtain π∗

r(i)
by optimizing e.q. (4)

4: Obtain ζ(i) by rollout π∗
r(i)

▷ Motion-language representation
5: ζ∗, r∗ ← VLM(R, ζ(i), ζ∗, r(i), r∗)
6: F ← VLM(R, ζ∗, r∗)

▷ Language-guided reward design
7: r(i+1) ∼ LLM(R, E ,F , r∗)
8: end for
9: Return: Optimized reward r∗

To address the challenges of limited task
understanding and multimodal reasoning,
we propose MoVLR, a control-in-the-loop
framework that integrates large language
models (LLMs) and vision–language mod-
els (VLMs) into the reward learning pro-
cess. MoVLR bridges explicit behavior
specifications expressed in natural lan-
guage with the implicit dynamical rep-
resentations essential for effective con-
trol. The key idea is to incorporate video
observations of policy-executed trajecto-
ries into the iterated learning loop, en-
abling the model to jointly reason over lin-
guistic intent and physical motion. This
multimodal feedback provides structured
insights into trajectory feasibility, biome-
chanical coherence, and task completion,
ultimately yielding reward functions that are more aligned with the underlying system dynamics.

The workflow of MoVLR is summarized in Algorithm 1. At each iteration, the policy is opti-
mized based on the current reward proposal, producing dynamical feedback that reflects the control
performance (musculoskeletal motion dynamics, line 3-4). Given the executed control dynam-
ics (rendered as video), a vision–language model (VLM) performs reflective evaluation, updat-
ing the current best reward design and generating a textual summary of the observed task perfor-
mance (motion-language representation, line 5-6). incorporates both the motion description and
the VLM-generated summary from the previous iteration to refine the reward generation process
(language-guided reward design, line 7). Below we discuss the implementation details of each
components for effective reward learning of musculoskeletal control.

4.1. Musculoskeletal motion dynamics

We evaluate each reward proposal by performing policy optimization to generate dynamical con-
trol trajectories as feedback. In MoVLR, we adopt MPC2 as the control policy—a model-based
planner that employs a hierarchical control pipeline for musculoskeletal systems (Wei et al., 2025).
Compared with reinforcement-learning based control with hours to days of training, MPC2 employ
a training-free pipeline to significantly reduces the policy optimization time to minutes, allowing
more reward learning iterations in MoVLR (see Appendix A.1 for method details). The resulting
musculoskeletal motion dynamics obtained by rolling out the optimized policy serve as the dynam-
ical feedback for refining the reward design.

4.2. Motion-language representation

We employ the VLM as a semantic observer that produces interpretable, language-based evalua-
tions rather than scalar scores. The VLM compares the rendered control dynamics ζ(i) against the
dynamics generated under the current best reward design. If the newly proposed reward yields con-
trol sequences that better align with the motion description, both the current best reward r∗ and
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Task: Walk forward in a straight line on flat terrain, maintaining
directional stability and good posture.
Video Prompt: You are given a video of a musculoskeletal model
showing its motion under a control method. Provide an analysis of its
performance:
1) Assess whether the task was completed successfully.
2) Identify key issues in the motion compared to the desired behavior...
3) Suggest how to improve the control method for better results

1) No, the task is not completed successfully.
2) Directional Stability: The model does not maintain a straight path ...
    Upright: The model's upper body fails to keep an upright posture ... 
     ...
     Arm Swing: The arm swing is not coordinated with the leg motion ...
3) Increase weight related to penalizing lateral motion, update existing
upright function ..., add a term to constrain arm motion and encourage
more synchronized motions, ...

VLM

Task: Walk forward in a straight line on flat terrain, maintaining
directional stability and good posture.
Visual Feedback
- The model does not maintain a straight path, increase the weight for
penalizing lateral motion.
...
- The arm swing is not coordinated with leg movements, add a term to
constrain arm motion.
Environment Code
void WalkGym::RewardFn::Reward(const ...) {

double head_feet_error = head_position - feet_height;
double pelvis_height = ...;

  ...
}

void WalkGym::RewardFn::Reward(const ...) {
- double head_feet_error = head_position - feet_height;

+ Vec3 avg_feet_pos = 0.5 * (l_foot_pos + r_foot_pos);
+ double head_feet_error = norm(head_pos - avg_feet_pos);
  double pelvis_height = ...;

// Encourage upperbody to stay upright

+ double upright = head_position - pelvis_height;

  ...
// penalize y-axis movement

+ double lateral_dev = 20*mju_abs(com_velocity[1]); 

+ // Arm Swing Constraint

+ double arm_swing = mju_abs(shoulder_distance - 0.5); 
  ...

}

LLM

a)

b)

Figure 2: Example inputs and outputs of the (a) VLM, and (b) LLM. The VLM analyzes a video
motion sequence based on the given motion description and provides diagnostic feedback. The
LLM uses this feedback to design corresponding code modifications to the reward function.

the corresponding control dynamics ζ∗ are updated. The VLM also produces structured textual
feedback F of r∗ which qualitatively evaluates the motion relative to R. This feedback serves as
reflective input to the LLM, guiding subsequent iterations of reward design. Through this mech-
anism, MoVLR establishes a multimodal interface for specifying and interpreting complex motor
behaviors, integrating visual and textual modalities to reason about the correspondence between
natural-language motion descriptions and observed motion.

4.3. Language-guided reward design

Designing executable reward functions from multimodal inputs requires mapping semantic and
structural priors to physically meaningful quantities. In musculoskeletal control, this must cap-
ture nonlinear couplings between balance, posture, and coordination—relations difficult to encode
manually. We employ a language-guided reward synthesis process, where an LLM generates inter-
pretable reward terms by reasoning over both linguistic and structural context:

(1) Motion Description. The natural-language specification R defines the high-level control
objective (e.g., “make the arm grasp and lift the bottle”). It serves as a semantic prior that highlights
key performance factors such as grasp stability, coordination, or smoothness.

(2) Environment. The environment E specifies the state, control, and transition dynamics. Pars-
ing E allows the identification of physically relevant variables (e.g., joint angles, actuator lengths,
and contact forces) that can parameterize executable reward terms.

Given above contextual information along with and VLM-based evaluations F , the LLM per-
forms a local search over the current best reward design r∗ to synthesize new reward terms. Each
term encodes a biomechanical sub-objective such as orientation tracking, smoothness, or joint sta-
bility. At each iteration, reward proposals are continuously designed and refined until an executable
design is identified, yielding an interpretable reward function suitable for policy optimization and
control-based dynamical feedback design. Compared with traditional language-based reward de-
sign approaches that rely solely on LLMs, MoVLR introduces dynamical control feedback, enabling
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the VLM to reflect on kinematic and postural precision—an essential capability for achieving stable
musculoskeletal control.

a) Flat Terrain b) Slope Terrain c) Rough Terrain d) Bottle Pouring e) Cube Rotation f) Ostrich

Figure 3: Overview of the six evaluated tasks. The top row illustrates the environment setup for
each task, and the bottom row visualizes the relative weighting of learned reward terms.

5. Experiments

We evaluate MoVLR across a diverse set of musculoskeletal systems and tasks, assessing its ca-
pacity to design reward functions, solve novel tasks, and integrate different forms of human in-
put. Unless otherwise noted, all VLM and LLM-based reward design and feedback algorithms
are built on the Gemini (Team et al., 2023) and Qwen models (Yang et al., 2024), specifically
gemini-2.0-flash and Qwen2.5-Coder-32B-Instruct models.

5.1. Environments

As shown in Figure 3, our experimental setup spans three musculoskeletal systems and a total of
eight tasks implemented in the MuJoCo simulator (Todorov et al., 2012). The suite is designed to
capture a broad spectrum of control challenges. It includes three locomotion environments (flat,
rough, and sloped terrain) that test stability and adaptability under varying ground conditions. The
flat terrain setting additionally includes two variants – a turning task (left/right directional transi-
tions) and an injured-body condition where selected leg muscle groups are weakened – to evaluate
gait robustness and compensatory control strategies. The suite further includes two manipulation
tasks (bottle pouring and cube manipulation) that emphasize coordination and precision, and one
non-human locomotion task based on an ostrich muscle model that evaluates generalization beyond
human morphology.

5.2. Experimental Results

Comparison with state-of-the-art LLM/VLM based methods. We evaluate our method against
three baselines: human-engineered reward functions (Wei et al., 2025), Eureka (Ma et al., 2023),
and HARMON (Jiang et al., 2024) on both locomotion and manipulation tasks. Our implementation
details of method and baselines are elaborated in Appendix A.2. Evaluation focuses on final per-
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formance after convergence, measured by average walking distance over 10 seconds for locomotion
and by object position and orientation errors for manipulation.

(a) Locomotion Tasks (b) Manipulation Tasks

Figure 4: Performance comparison of MoVLR against baselines across (a) locomotion and (b) ma-
nipulation tasks. Locomotion is measured by total distance walked in 10s (higher is better), while
manipulation is evaluated by object distance and orientation errors (lower is better).

As shown in Figure 4 (a), across all locomotion environments, MoVLR consistently produces
higher task performance, yielding the longest walking distances on flat, sloped, and rough terrains.
The improvements are most pronounced in challenging settings, where terrain irregularities require
adaptive stability and coordinated motion. Despite slight a slightly lower performance compared
to the human baseline, MoVLR also generalizes effectively to the ostrich environment, maintaining
strong performance despite substantial morphological differences from the human model. These
results demonstrate that multimodal reward refinement leads to more robust and transferable control
objectives across biomechanical structures.

As shown in Figure 4 (b), MoVLR achieves the lowest average position and orientation errors
compared to all baselines in manipulation tasks, indicating more precise and stable object interac-
tions. The improvements are consistent across both bottle-pouring and cube-rotation movements,
suggesting that multimodal feedback enhances the alignment between high-level motion intent and
low-level control behavior.

Additional heatmaps for the remaining four tasks are included in appendix A.4, illustrating
consistent refinement dynamics across both locomotion and manipulation domains.
Evolution of weighted reward terms across refinement stages. The progression of residual re-
ward weights across refinement stages reveals how the feedback-driven process reorganizes the
internal optimization landscape toward biomechanically consistent behavior. Visual inspection of
the heatmaps shows clear temporal structure in how specific reward terms are emphasized, atten-
uated, or replaced as refinement proceeds. Rather than uniform or random variation, the weights
evolve in a task-specific and interpretable manner that reflects the gradual integration of control
priorities derived from feedback. This progression is visually illustrated in Figure 5, showing the
musculoskeletal agent’s transition from instability to coordinated walking as successive stages refine
control priorities such as balance, posture, and stride formation.

In Figure 6 (a), we demonstrate the learning evolution of MoVLR in locomotion task over rough
terrain. We observe early refinement stages concentrate weight on coarse global stability terms such
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Figure 5: Progressive improvement of the musculoskeletal model’s gait across training stages based
on movement video.

as height, velocity, and balance. These initial weightings dominate the first few iterations, suggest-
ing that the system prioritizes feasibility and upright posture before attempting finer coordination.
As refinement progresses, the influence of these global terms decreases steadily, while localized
biomechanical descriptors, such as foot placement, hip alignment, and knee control, become more
prominent. This redistribution indicates a shift from whole-body stabilization to detailed gait reg-
ulation. By later stages, the weight profiles become highly structured, with consistent activation
around terms governing step symmetry, torso orientation, and ankle stability, suggesting conver-
gence toward coordinated, rhythmic locomotion.

In the bottle pouring task shown in Figure 6 (b), a similar hierarchical refinement pattern is
observed. Initial stages emphasize gross spatial alignment through terms such as bottle position and
bottle orientation, enabling task feasibility. With continued refinement, weights shift toward fine
motor control components, including grasp quality, elbow joint accuracy, and finger coordination.
The redistribution of weights toward distal control terms indicates that the framework captures the
need for precise joint coordination in achieving smooth and stable object manipulation.
Ablation Studies. To better understand the contribution of each design component and the gen-
erality of the proposed framework, we conduct a series of ablation studies examining (1) reward
generalizability across environments, model conditions and policy parameterization; (2) the use of
a single unified vision–language model for feedback and code generation, and

(1) Reward generalizability. We test transferring reward functions designed on flat terrain to
new environments without additional refinement. The transferred rewards show strong generaliza-
tion across terrains and morphologies. While performance drops moderately on rough (2.41 m vs.
2.76 m) and sloped (1.99 m vs. 2.25 m) terrains, agents remain stable and capable of sustained
locomotion. In the injured-body setting, transfer performance slightly improves (5.12 m vs. 4.8 m),
indicating robustness to actuator failure. The method also enables a left-turn behavior previously
infeasible with hand-engineered rewards, showing that the learned reward structure extends beyond
the original environment configuration.

We test reward functions learned by MoVLR in a reinforcement learning setting using Dyn-
Syn (He et al., 2024) for the bottle-pouring task. The transferred rewards enable successful task
completion without further tuning, producing stable pouring trajectories, demonstrating that MoVLR-
designed rewards capture generalizable structure transferable across control algorithms.
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(a) Rough Terrain (b) Bottle Pouring

Figure 6: Weighted reward terms per stage for (a) locomotion task, (b) manipulation task

(2) VLM-only reward learning. The framework’s design separates the vision–language feed-
back and the language-based code generation components. To assess whether this modularity is
necessary, we implement a unified configuration in which a single multimodal model performs both
feedback interpretation and code synthesis. The unified variant shows substantially degraded perfor-
mance, often producing invalid or incomplete reward code and failing to improve control behavior
over iterations. These observations suggest that current vision–language models do not yet pos-
sess the compositional or programmatic reasoning required to perform both tasks simultaneously,
underscoring the importance of maintaining distinct feedback and synthesis stages.

6. Conclusion and Discussion

In this work, we propose MoVLR , an automatic workflow that leverages vision-language models to
bridge explicit language descriptions with the implicit motor control required for high-dimensional
musculoskeletal systems. By incorporating multimodal feedback into the learning loop, our ap-
proach designs biomechanically grounded reward functions, which are iteratively refined to guide
the musculoskeletal agent toward natural, stable motion. Through this method, we demonstrate that
VLMs can successfully translate high-level motion descriptions into detailed control objectives,
optimizing musculoskeletal agents’ performance in diverse environments and tasks.

Experimental results across locomotion and manipulation tasks show that MoVLR outperforms
human and language-based baselines, yielding greater task performances. The iterative refinement
process allows the reward function to evolve from emphasizing coarse global stability to fine-
grained joint coordination, closely reflecting the hierarchical organization of human motor learning.

Beyond quantitative improvements, MoVLR highlights a fundamental connection between ex-
plicit language intent and implicit reward emergence. The VLM acts as a perceptual intermediary
that grounds linguistic objectives in physical dynamics, producing internal reward representations
that are interpretable and dynamically consistent. This work opens possibilities for scaling bio-
logically plausible control to more complex behaviors and morphologies. By leveraging multi-
modal, language-conditioned feedback, the proposed framework offers a promising path toward
interpretable, adaptive, and generalizable control, where reward learning is shaped by perceptual
understanding of motion and task intent.
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Appendix A.

A.1. Model Predictive Control with Morphology-Aware Proportional Control

Model Predictive Control with Morphology-Aware Proportional Control (MPC2) (Wei et al., 2025)
is a hierarchical control scheme for high-dimensional musculoskeletal systems. Let z ∈ Rdz de-
note the major joint coordinates defining the system posture (dz ≪ du, where du is the actuator
dimension). The high-level planner solves

z∗ = argmin
z

H−1∑
h=0

C(st+h, ut+h), ut+h = πMP(st+h, z), (6)

using a sampling-based MPC (e.g., MPPI) over posture space. Instant rollouts are introduced by
sampling candidate z around the current posture Mpos(st) for rapid recovery from disturbances.

The low-level morphology-aware proportional controller maps the target posture z∗ to target
actuator lengths l∗ and computes desired actuator forces

f∗
m = min

(
0, K · (l∗ − l)

)
, K = k̄

∑
i∈Iz

∣∣coli(Jm) ·
(
z∗i −Mpos(st)i

)∣∣ , , (7)

where K is the proportional gain of actuators, and k̄ is the global scalar parameter. Actuator
commands u∗ follow from first-order actuator dynamics. This decomposition reduces the optimiza-
tion dimension from H · du to dz , enabling zero-shot control across morphologies without training.

A.2. Baseline Methods

Eureka (Ma et al., 2023) We adapt the Eureka framework, which uses large language models to
synthesize reward functions from textual motion descriptions. For fair comparison, we implement
Eureka using the same closed-loop setting as our method, but without the vision-language feedback:
the language model receives textual summaries of agent rollouts rather than video-based feedback.
The number of optimization rounds, samples per round, and other training parameters are matched
to our method to ensure a controlled comparison.
HARMON (Jiang et al., 2024) We adapt the HARMON framework, which combines large lan-
guage model reasoning with visual motion priors to generate whole-body humanoid motions. For
fair comparison, we employ HARMON in our musculoskeletal control setting by using the same
closed loop setting as our method, but replacing the video feedback with image feedback: the VLM
receives 4 evenly spaced frames extracted from the rendered video rather than the full video. The
number of optimization rounds, samples per round, and other training parameters are matched to
our method to ensure a controlled comparison.
Human We use hand-crafted reward functions provided with the musculoskeletal tasks as a base-
line. These rewards are designed by domain experts and encode task objectives through manually
specified heuristics (Wei et al., 2025).

A.3. Prompts and Examples

Visual Feedback Prompt
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You are given a video of a {body} muscle skeleton model whose task is to {task}.
The video shows the model’s actions after training a reinforcement learning
model. The goal is to perform the task well and correctly. Provide a

detailed critical analysis of the model’s performance. You should be critial
and point out specifically areas that need to be improved. Provide your

analysis in a clear and concise manner, using appropriate technical language
and terminology where necessary.

The reward terms used to train the reinforcement learning model, including their
weights, are listed below.

{reward_terms}

Please perform the following analysis:

a) First determine whether the task {task} was completed successfully, answer
YES or NO.

b) Identify the main issues with the motion produced compared to the desired
motion from the task description. First focus on successfully completing the
general task, then fine-tuning details. If the task is not successfully

completed yet do not worry about fine-tuning details. Be detailed with
descriptions. Also analyze what specific motions in the video could cause
the issues or failures. Focus mainly on {focus} motion/issues. Describe
directions from the point of the view of the muscle skeleton rather than a
third person view.

c) Someone is trying to run a control method to perform better than what was
shown in the video, and needs some suggestions about some reward terms that
could be used, added, or given greater/less weight. For new terms, assign a
reasonable weight value between 0 and the maximum weight, and increase/
decrease gradually if/when necessary. Do not suggest too many or redundant
terms. If suggesting a new term, also suggest how the function should be
defined (using words is enough, don’t need to use specific functions/coding
names). Given the video, issues, and existing reward terms listed above,
provide some suggestions.

Be specific in your observations and suggestions. Your goal is to help improve
both the correctness and the naturalness of the {body}’s motion

Coding Language Model Prompt

You are updating the residual function of a MuJoCo muscle-skeleton environment
using a **conservative, feedback-driven edit policy** to improve the
performance of the task.

**Inputs**
- Goal/task: {task}
- Environment code (contains residual function):
$[$env_code$]$
{env_code}
$[$env_code$]$
- Task file (canonical list of valid sensors):
$[$task_code$]$
{task_code}
$[$task_code$]$
- The weights for each residual term during previous stages are provided below.
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{residual_terms}
- Video feedback after analyzing a single round of running the muscle skeleton

performing the task:
{feedback_string}

**Editing guidelines**
- Make a **small number of localized changes** that directly address issues

observed in the feedback.
- When possible, prefer adjusting existing residual terms (e.g., scaling,

weighting, or tuning) before introducing new ones.
- New residual terms may be added if they clearly align with the feedback and

are supported by the task file.
- Residual functions should be defined carefully and with enough detail
- Keep edits focused on the relevant regions; avoid broad or unrelated

modifications.
- Do not include weight term implementations in the environment code, all terms

should be multiplied by 1.
- Pay attention to comments in the code if they exist in the code
- Ensure that the residual function remains stable and interpretable across

training stages.
- When editing the residual function, the following vector/quaternion operations

can be used

{operations}

{code_tips}

**Output format (strict)**
- Output the **entire, updated environment code** in a single ‘‘‘cpp‘‘‘ block.
- No explanations, no diffs, no comments, only the final code.

Selection
You are an expert biomechanical analyst. You will be shown two videos, each

depicting a muscle-skeleton model performing the task {task}. Carefully
observe both performances and compare how accurately, smoothly, and
efficiently the models complete the task.

Evaluate each video based on key biomechanical factors: task success, balance
and stability, posture and alignment, joint coordination, and overall
movement naturalness. Consider whether the motion looks physically plausible
and efficient, without unnecessary or unstable compensations. Pay attention
to gait or limb symmetry, center-of-mass control, and the sequencing of

major joints.

After analyzing both videos, choose which one demonstrates better completion of
the task, that is, which looks more correct, natural, stable, and
biomechanically efficient.

Respond with only one of the following words: "first" or "second", followed by a
brief explanation justifying your choice.

Task Descriptions
Flat Terrain

Walk forward in a straight line on flat terrain at a velocity of about 1 m/s,
maintaining directional stability and good posture
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Slope Terrain

Walk forward in a straight line on sloped terrain at a velocity of about 1 m/s,
maintaining directional stability and good posture

Rough Terrain

Walk forward in a straight line on rough terrain at a velocity of about 1 m/s,
maintaining directional stability and good posture

Bottle Pouring

Grasp and reorient the darker-shaded bottle to match the target orientation and
position, indicated by a lighter shade bottle

Cube Rotation

Grasp and reorient the cube to match the target orientation, keeping the cube
held approximately in front of the musculoskeleton’s chest

Ostrich

Make an ostrich walk forward in a straight line on a flat terrain with velocity
approximately 1 m/s and proper gait and posture (flat body, relatively
straight legs, stable head)

Injured Body

Make a human muscle skeleton model with right-side injuries to the biceps,
gastrocnemius, semimembranosus, and semitendinosus muscles walk forward in a
straight line on a flat terrain

Left-Turn

Walk forward with good posture, then make a left turn and walk towards the new
facing direction after making the turn

A.4. Additional Experimental Results

Evolution of weighted reward terms for remaining tasks
We provide supplementary heatmaps visualizing the evolution of reward term weights across

refinement stages for the remaining four tasks: flat terrain, slope terrain, ostrich locomotion, and
cube rotation.
Comparison of Language-Designed and Human-Defined Reward Terms

Figure 8 compares the residual reward terms designed by the language model with those man-
ually specified by human experts across three musculoskeletal systems. The comparison highlights
the model’s capacity to infer a more comprehensive and morphology-aware set of control objectives.

In the fullbody model, the language model introduces a broader range of biomechanically
grounded terms – such as pelvis tilt control, hip coordination, and fgait symmetry – which ex-
tend beyond the coarse global stability terms (height, velocity, balance) typically defined by human
experts. For the upperbody model, the model captures fine-grained kinematic relations including
elbow strength, wrist rotation, and per-finger coordination, reflecting an understanding of localized
control relevant to manipulation tasks. Finally in the ostrich model, the model adapts to non-human
morphology with terms such as neck height, torso angle, and head stability, indicating a morpho-
logical generalization beyond human-centered priors.
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(a) Flat Terrain (b) Slope Terrain

(c) Ostrich (d) Cube Rotation

Figure 7: Weighted reward terms for (a) flat terrain, (b) slope terrain, (c) ostrich, (d) cube rotation
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Figure 8: Comparison of reward terms desgined by LLM only (blue) and by human experts (green),
with shared terms shown in orange, across three musculoskeletal systems.
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